Murphy Lab Group

ResearchPublicationsMembersProtocols

What governs how fast we age? Why do some biological processes stop working earlier than others? And what is happening at the molecular and cellular level as some organisms age while others continue to thrive?

Although seemingly philosophical in nature, these questions address one of the major mysteries of biology, the process of aging. With recent developments in genetics, molecular biology, and genomics, we now have the possibility of addressing these questions at the molecular level. Because our ultimate goal is not simply to extend lifespan, but to improve overall health, we must identify the genes associated with biological functions that we typically associate with quality of life. The goal of our laboratory's work is to understand the molecular mechanisms governing longevity and maintenance of the biological processes that exhibit age-related decline.

Recent Publications

  • Piwi/PRG-1 Argonaute and TGF-β Mediate Transgenerational Learned Pathogenic Avoidance

    Rebecca S. Moore; Rachel Kaletsky; Coleen T. Murphy
    Journal Article

    The ability to inherit learned information from parents could be evolutionarily beneficial, enabling progeny to better survive dangerous conditions. We discovered that, after C. elegans have learned to avoid the pathogenic bacteria Pseudomonas aeruginosa (PA14), they pass this learned behavior on to their progeny, through either the male or...

    0092-8674
  • Gut feelings: microRNAs tune protein quality control and ageing to odours

    Rachel Kaletsky; Coleen T. Murphy
    Journal Article

    A new study in C. elegans identifies a microRNA-dependent mechanism that enables olfactory neurons to rapidly regulate protein degradation in the intestine and therefore organismal ageing.

    2522-5812
  • Investigating Mechanisms that Control Ubiquitin-Mediated DAF-16/FOXO Protein Turnover.

    Thomas Heimbucher; Coleen T. Murphy
    Journal Article

    Protein turnover of FOXO family transcription factors is regulated by the ubiquitin-proteasome system. A complex interplay of factors that covalently attach certain types of ubiquitin chains (E3-ubiquitin ligases), and enzymes that are able to remove ubiquitin conjugates (deubiquitylases), regulate the degradation of FOXO proteins by the...

  • Regulation of reproduction and longevity by nutrient-sensing pathways

    Nicole M. Templeman; Coleen T. Murphy
    Journal Article

    Nutrients are necessary for life, as they are a crucial requirement for biological processes including reproduction, somatic growth, and tissue maintenance. Therefore, signaling systems involved in detecting and interpreting nutrient or energy levels—most notably, the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, mechanistic...

  • C. elegans pathogenic learning confers multigenerational pathogen avoidance

    Rebecca S. Moore; Rachel Kaletsky; Coleen Tara Murphy
    Journal Article

    The ability to pass on learned information to progeny could present an evolutionary advantage for many generations. While apparently evolutionarily conserved, transgenerational epigenetic inheritance (TEI) is not well understood at the molecular or behavioral levels. Here we describe our discovery that C. elegans can pass on a learned...

  • Insulin Signaling Regulates Oocyte Quality Maintenance with Age via Cathepsin B Activity.

    Nicole M. Templeman; Shijing Luo; Rachel Kaletsky; Cheng Shi; Jasmine Ashraf; William Keyes; Coleen T. Murphy
    Journal Article

    A decline in female reproduction is one of the earliest hallmarks of aging in many animals, including invertebrates and mammals [1-4]. The insulin/insulin-like growth factor-1 signaling (IIS) pathway has a conserved role in regulating longevity [5] and also controls reproductive aging [2, 6]. Although IIS transcriptional targets that regulate...

  • An integrative tissue-network approach to identify and test human disease genes.

    Victoria Yao; Rachel Kaletsky; William Keyes; Danielle E. Mor; Aaron K. Wong; Salman Sohrabi; Coleen T. Murphy; Olga G. Troyanskaya
    Journal Article

    Effective discovery of causal disease genes must overcome the statistical challenges of quantitative genetics studies and the practical limitations of human biology experiments. Here we developed diseaseQUEST, an integrative approach that combines data from human genome-wide disease studies with in silico network models of tissue- and cell-type...

  • Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis.

    Tomoko M. Tabuchi; Andreas Rechtsteiner; Tess E. Jeffers; Thea A. Egelhofer; Coleen T. Murphy; Susan Strome
    Journal Article

    Paternal contributions to epigenetic inheritance are not well understood. Paternal contributions via marked nucleosomes are particularly understudied, in part because sperm in some organisms replace the majority of nucleosome packaging with protamine packaging. Here we report that in Caenorhabditis elegans sperm, the genome is packaged in...

  • Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression.

    Rachel Kaletsky; Victoria Yao; April Williams; Alexi M. Runnels; Alicja Tadych; Shiyi Zhou; Olga G. Troyanskaya; Coleen T. Murphy
    Journal Article

    The biology and behavior of adults differ substantially from those of developing animals, and cell-specific information is critical for deciphering the biology of multicellular animals. Thus, adult tissue-specific transcriptomic data are critical for understanding molecular mechanisms that control their phenotypes. We used adult cell-specific...

  • Activation of G Signaling Enhances Memory Consolidation and Slows Cognitive Decline.

    Rachel N. Arey; Geneva M. Stein; Rachel Kaletsky; Amanda Kauffman; Coleen T. Murphy
    Journal Article

    Perhaps the most devastating decline with age is the loss of memory. Therefore, identifying mechanisms to restore memory function with age is critical. Using C. elegans associative learning and memory assays, we identified a gain-of-function G signaling pathway mutant that forms a long-term (cAMP response element binding protein [CREB]-...

Contact information

Carl Icahn Lab 148
Princeton University
Princeton NJ, 08540

Lab phone: 609-258–9505

Coleen Murphy

  • Professor of Molecular Biology and the Lewis-Sigler Institute for Integrative Genomics
  • Director of the Paul F. Glenn Laboratories for Aging Research at Princeton University
Phone: 609-258–9396

Dawn Capizzi

  • Faculty Assistant
Phone: 609-258–1617