The Murphy Lab

Murphy Lab 11-2023

Image removed.

Research
Publications
Members
Protocols

What governs how fast we age? Why do some biological processes stop working earlier than others? And what is happening at the molecular and cellular level as some organisms age while others continue to thrive?

Although seemingly philosophical in nature, these questions address one of the major mysteries of biology, the process of aging. With recent developments in genetics, molecular biology, and genomics, we now have the possibility of addressing these questions at the molecular level. Because our ultimate goal is not simply to extend lifespan, but to improve overall health, we must identify the genes associated with biological functions that we typically associate with quality of life. The goal of our laboratory's work is to understand the molecular mechanisms governing longevity and maintenance of the biological processes that exhibit age-related decline.

Recent Publications

10 Publications
Applied Filters: First Letter Of Last Name: L Reset
Journal Article

Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants…

Journal Article

Aging is a risk factor for chronic diseases, and identifying targets for intervention is a goal of the aging field. Burkewitz et al. now describe a mechanism that mediates the specific role for AMPK in longevity, whereby its activity in neurons modulates metabolism and mitochondrial integrity in peripheral tissues.

Journal Article

Understanding the molecular basis underlying aging is critical if we are to fully understand how and why we age-and possibly how to delay the aging process. Up until now, most longevity pathways were discovered in invertebrates because of their short lifespans and availability of genetic tools. Now, Reichwald et al. and Valenzano et al…

Journal Article

Aging is associated with reduced capacity for tissue repair, perhaps the most critical of which is a decline in the ability of aged neurons to recover after injury. Identifying factors that improve the regenerative ability of aging neurons is a prerequisite for therapy design and remains an enormous challenge, yet many of the genes that play a…

Journal Article

In a remarkably conserved insulin signaling pathway that is well-known for its regulation of longevity in worms, flies, and mammals, the major C. elegans effector of this pathway, DAF-16/FOXO, also modulates many other physiological processes. This raises the question of how DAF-16/FOXO chooses the correct targets to achieve the appropriate…

Journal Article

Many studies have addressed the effect of dietary glycemic index on obesity and diabetes, but little is known about its effect on life span itself. We found that adding a small amount of glucose to the medium (2%) shortened the life span of C. elegans by inhibiting the activities of life span-extending transcription factors that are also…

Journal Article

The nematode Caenorhabditis elegans (C. elegans) is an excellent model to study reproductive aging because of its short life span, its cessation of reproduction in mid-adulthood, and the strong conservation of pathways that regulate longevity. During its lifetime, a wild-type C. elegans hermaphrodite usually lays about 200-300 self-fertilized…

Journal Article

Aging is the greatest risk factor for a number of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Furthermore, normal aging is associated with a decline in sensory, motor, and cognitive functions. Emerging evidence suggests that synapse alterations, rather than neuronal cell death, are the causes of neuronal…

Contact information

Carl Icahn Lab 140
Princeton University
Princeton NJ, 08540

Lab phone: 609-258–9505