The Murphy Lab

Murphy Lab 11-2023

Image removed.

Research
Publications
Members
Protocols

What governs how fast we age? Why do some biological processes stop working earlier than others? And what is happening at the molecular and cellular level as some organisms age while others continue to thrive?

Although seemingly philosophical in nature, these questions address one of the major mysteries of biology, the process of aging. With recent developments in genetics, molecular biology, and genomics, we now have the possibility of addressing these questions at the molecular level. Because our ultimate goal is not simply to extend lifespan, but to improve overall health, we must identify the genes associated with biological functions that we typically associate with quality of life. The goal of our laboratory's work is to understand the molecular mechanisms governing longevity and maintenance of the biological processes that exhibit age-related decline.

Recent Publications

10 Publications
Journal Article

While most of the sequence of myosin's motor domain is highly conserved among various organisms and tissue types, the junctions between the 25 and 50 kDa domains and the 50 and 20 kDa domains are strikingly divergent. The 50-20K loop is positioned to interact with actin, while the 25-50K loop is situated nearer the ATP binding site [Rayment, I…

Journal Article

We are interested in the role that solvent-exposed, proteolytically sensitive surface loops play in myosin function. The 25-50K loop, or loop 1, is near the ATP binding site, while the 50-20K loop (loop 2) is in the actin binding site. Through chimeric studies, we have found that loop 1 affects ADP release [Murphy, C. T., and Spudich, J. A. …

Journal Article

The catalytic head of myosin is a globular structure that has historically been divided into three segments of 25, 50, and 20 kDa. The solvent-exposed, proteolytically-sensitive surface loops of myosin that join these three segments are highly variable in their sequences. While surface loops have not traditionally been thought to affect…

Journal Article

It is thought that Switch II of myosin, kinesin and G proteins has an important function in relating nucleotide state to protein conformation. Here we examine a myosin mutant containing an S456L substitution in the Switch II region. In this protein, mechanical activity is uncoupled from the chemical energy of ATP hydrolysis so that its gliding…

Journal Article

Ageing is a fundamental, unsolved mystery in biology. DAF-16, a FOXO-family transcription factor, influences the rate of ageing of Caenorhabditis elegans in response to insulin/insulin-like growth factor 1 (IGF-I) signalling. Using DNA microarray analysis, we have found that DAF-16 affects expression of a set of genes during early adulthood,…

Contact information

Carl Icahn Lab 140
Princeton University
Princeton NJ, 08540

Lab phone: 609-258–9505

Coleen Murphy
Director of LSI
Director of Simons Foundation's SCPAB - https://www.simonsfoundation.org/collaborations/plasticity-and-the-aging-brain/
Director of the Paul F. Glenn Laboratories for Aging Research at Princeton University
Professor of Molecular Biology and the Lewis-Sigler Institute for Integrative Genomics
Office Phone