Publications Search

95 Publications

2010

Landis J, Murphy C. 2010. Integration of diverse inputs in the regulation of Caenorhabditis elegans DAF-16/FOXO. Dev Dyn. 239(5):1405–12. doi:10.1002/dvdy.22244.
Luo S, Kleemann G, Ashraf J, Shaw W, Murphy C. 2010. TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell. 143(2):299–312. doi:10.1016/j.cell.2010.09.013.
Murphy C. 2010. Aging: miRacles of longevity?. Curr Biol. 20(24):R1076–8. doi:10.1016/j.cub.2010.11.018.

2009

Chikina M, Huttenhower C, Murphy C, Troyanskaya O. 2009. Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Comput Biol. 5(6):e1000417. doi:10.1371/journal.pcbi.1000417.
Kleemann G, Murphy C. 2009. The endocrine regulation of aging in Caenorhabditis elegans. Mol Cell Endocrinol. 299(1):51–7. doi:10.1016/j.mce.2008.10.048.
Lee S-J, Murphy C, Kenyon C. 2009. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 10(5):379–91. doi:10.1016/j.cmet.2009.10.003.
Luo S, Shaw W, Ashraf J, Murphy C. 2009. TGF-beta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging. PLoS Genet. 5(12):e1000789. doi:10.1371/journal.pgen.1000789.
Oliveira R, Abate J, Dilks K, Landis J, Ashraf J, Murphy C, Blackwell K. 2009. Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell. 8(5):524–41. doi:10.1111/j.1474-9726.2009.00501.x.

2007

Murphy C, Lee S-J, Kenyon C. 2007. Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 104(48):19046–50. doi:10.1073/pnas.0709613104.
Shaw W, Luo S, Landis J, Ashraf J, Murphy C. 2007. The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr Biol. 17(19):1635–45. doi:10.1016/j.cub.2007.08.058.

2006

Kenyon C, Murphy C. 2006. Enrichment of regulatory motifs upstream of predicted DAF-16 targets. Nat Genet. 38(4):397–8; author reply 398. doi:10.1038/ng0406-397.
Murphy C. 2006. Using whole-genome transcriptional analyses to identify molecular mechanisms of aging. Drug Discovery Today: Disease Mechanisms. 3:41–46. doi:https://doi.org/10.1016/j.ddmec.2006.02.012. http://www.sciencedirect.com/science/article/pii/S1740676506000125.
Murphy C. 2006. The search for DAF-16/FOXO transcriptional targets: approaches and discoveries. Exp Gerontol. 41(10):910–21. doi:10.1016/j.exger.2006.06.040.

2004

McCarroll S, Murphy C, Zou S, Pletcher S, Chin C-S, Jan Y, Kenyon C, Bargmann C, Li H. 2004. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet. 36(2):197–204. doi:10.1038/ng1291.

2003

Hsu A-L, Murphy C, Kenyon C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 300(5622):1142–5. doi:10.1126/science.1083701.
Murphy C, McCarroll S, Bargmann C, Fraser A, Kamath R, Ahringer J, Li H, Kenyon C. 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 424(6946):277–83. doi:10.1038/nature01789.

2001

Murphy C, Rock R, Spudich J. 2001. A myosin II mutation uncouples ATPase activity from motility and shortens step size. Nat Cell Biol. 3(3):311–5. doi:10.1038/35060110.

2000

Murphy C, Spudich J. 2000. Variable surface loops and myosin activity: accessories to a motor. J Muscle Res Cell Motil. 21(2):139–51.

1999

Murphy C, Spudich J. 1999. The sequence of the myosin 50-20K loop affects Myosin's affinity for actin throughout the actin-myosin ATPase cycle and its maximum ATPase activity. Biochemistry. 38(12):3785–92. doi:10.1021/bi9826815.

1998

Murphy C, Spudich J. 1998. Dictyostelium myosin 25-50K loop substitutions specifically affect ADP release rates. Biochemistry. 37(19):6738–44. doi:10.1021/bi972903j.