Publications Search

Found 23 results
[ Author(Asc)] Keyword Title Type Year
Filters: First Letter Of Last Name is M  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Murphy CT..  2020.  9c. Short and sweet. Elife.
Murphy CT.  2019.  Being Open to the Unexpected. Mol Biol Cell.
Murphy CT, Hu PJ.  2013.  Insulin/insulin-like growth factor signaling in C. elegans.. WormBook. :1-43.
Murphy CT, Spudich JA.  1998.  Dictyostelium myosin 25-50K loop substitutions specifically affect ADP release rates.. Biochemistry. 37(19):6738-44.
Murphy CT, Spudich JA.  1999.  The sequence of the myosin 50-20K loop affects Myosin's affinity for actin throughout the actin-myosin ATPase cycle and its maximum ATPase activity.. Biochemistry. 38(12):3785-92.
Murphy CT, Spudich JA.  2000.  Variable surface loops and myosin activity: accessories to a motor.. J Muscle Res Cell Motil. 21(2):139-51.
Murphy CT, Rock RS, Spudich JA.  2001.  A myosin II mutation uncouples ATPase activity from motility and shortens step size.. Nat Cell Biol. 3(3):311-5.
Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C.  2003.  Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans.. Nature. 424(6946):277-83.
Murphy CT.  2006.  Using whole-genome transcriptional analyses to identify molecular mechanisms of aging. Drug Discovery Today: Disease Mechanisms. 3:41-46.
Murphy CT.  2006.  The search for DAF-16/FOXO transcriptional targets: approaches and discoveries.. Exp Gerontol. 41(10):910-21.
Murphy CT.  2010.  Aging: miRacles of longevity? Curr Biol. 20(24):R1076-8.
Murphy CT, Lee S-J, Kenyon C.  2007.  Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans.. Proc Natl Acad Sci U S A. 104(48):19046-50.
Mor DE, Sohrabi S, Kaletsky R, Keyes W, Tartici A, Kalia V, Miller GW, Murphy CT.  2020.  4. Metformin rescues Parkinson’s disease phenotypes caused by hyperactive mitochondria. Proc Natl Acad Sci U S A..
Mor DE, Sohrabi S, Kaletsky R, Keyes W, Kalia V, Miller GW, Murphy CT.  2020.  9b. Metabolic defects cause hyperactive mitochondria and Parkinson’s disease-like traits. bioRxiv.
Mor DE, Huertas F, Morse AM, Kaletsky R., Murphy CT, Kalia V, Miller GW, Moskalenko O, Conesa A, McIntyre LM.  2021.  3. GAIT-GM integrative cross-omics analyses reveal cholinergic defects in a C. elegans model of Parkinson’s disease. bioRxiv.
Moore RS, Kaletsky R, Lesnik C, Cota V, Blackman E, Parsons LR, Gitai Z, Murphy CT.  2021.  4. The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell.
Moore RS, Kaletsky R., Murphy CT.  2021.  6. Protocol for transgenerational learned pathogen avoidance behavior assays in Caenorhabditis elegans. STAR protocols.
Moore RS*, Kaletsky R*, Lesnik C, Cota V, Blackman E, Parsons LR, Gitai Z, Murphy CT.  2020.  1. “Horizontal and vertical transmission of transgenerational memories via the Cer1 transposon. bioRxiv.
Moore RS, Kaletsky R, Murphy CTara.  2018.  C. elegans pathogenic learning confers multigenerational pathogen avoidance. bioRxiv.
Moore RS, Kaletsky R, Murphy CT.  2019.  Piwi/PRG-1 Argonaute and TGF-β Mediate Transgenerational Learned Pathogenic Avoidance. Cell. 177(7):-1841.e12.
McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin C-S, Jan YNung, Kenyon C, Bargmann CI, Li H.  2004.  Comparing genomic expression patterns across species identifies shared transcriptional profile in aging.. Nat Genet. 36(2):197-204.
Maliha G, Murphy CT.  2016.  A simple offspring-to-mother size ratio predicts post-reproductive lifespan. bioRxiv.
Mack HID, Heimbucher T, Murphy C.T..  2019.  The nematode Caenorhabditis elegans as a model for aging research. Drug Discov Today: Disease Models .